ГЛАВНОЕ МЕНЮ
Нашли ошибку? Выделите ее мышкой
и нажмите Ctrl + Enter

Машинное обучение в геологии: как автоматизировать интерпретацию данных?

27.02.2023

Машинное обучение может успешно применяться при лабораторных исследованиях данных, полученных в результате геологоразведочных работ. Оно помогает, во-первых,  оптимизировать сам процесс анализа, а во-вторых, автоматизировать интерпретацию данных.

Какие методы машинного обучения уже опробованы в геологии? Этому вопросу был посвящён вебинар «Лабораторные экспериментальные и цифровые исследования», прошедший 21 февраля 2023 года на платформе «Геовебинары».

Геологические данные без «разночтений»

Как правило, в процессе лабораторных исследований геологических данных возникает ряд проблем, и все они связаны с недостаточной точностью результатов. Так, разные лаборатории могут выдавать разные итоговые показатели по одним и тем же образцам горных пород.

Вместе с тем проведённых анализов может быть недостаточно для чётких выводов вследствие ограниченного объёма доступных материалов. Это чревато тем, что на выходе можно получить ненадёжные результаты, которые в дальнейшем могут снизить качество оценки всего месторождения.

«Более того, собранные данные могут недостаточно хорошо описывать тот или иной объект. Если же в лаборатории применяют методы аналогии, получаемые данные могут быть не всегда очевидны: к примеру, в процессе отбора проб с определённым интервалом можно в том числе пропустить какие-то важные интервалы, что тоже может сильно повлиять на оценку участка», — отметил руководитель по развитию продукта DeepCore Digital Petroleum Евгений Барабошкин.

Машинное обучение позволяет ускорить обработку геологических данных и к тому же избежать описанных «разночтений». Конкретные методы были применены учёными Российского государственного университета нефти и газа имени И. М. Губкина и описаны в научной статье «Применение алгоритмов машинного обучения в прогнозе результата пиролитического анализа».

Команда специалистов преследовала цель получить рабочую модель прогноза пиролитических параметров после экстракции образцов без проведения самой экстракции. Учёные взяли 300 образцов нефти из трёх скважин одного месторождения, расположенного в центральной части Западно-Сибирской провинции в пределах Фроловской впадины. Затем они провели оценку содержания различных компонентов в породе методом пиролиза.

геолог с минералом

Основываясь на данных, отобранных до и после экстракции, авторы работы создали разные алгоритмы регрессии машинного обучения, с помощью которых можно предсказать примерное количество нефти, доступное для извлечения из породы. Затем учёные сравнили эти алгоритмы и определили самый эффективный из них.

Для разработки модели прогнозирования были протестированы и сопоставлены 5 алгоритмов регрессии машинного обучения, включая множественную линейную регрессию, полиномиальную регрессию, опорную векторную регрессию, дерево решений и случайный лес.

В результате выяснилось, что наиболее оптимальным вариантом является метод случайного леса. Поясним, случайный лес — это метод, который объединяет прогнозы из нескольких алгоритмов машинного обучения, чтобы делать более точные прогнозы, чем любая отдельная модель. Алгоритм выдаёт множество прогнозов методом «дерева решений» и потом выводит среднее значение из всех.

«Другая работа тех же учёных РГУ нефти и газа имени И. М. Губкина была посвящена предсказанию геологической информации с помощью методов машинного обучения на основе геохимических проб из почв. Этот метод также позволяет значительно ускорить принятие решений в процессе лабораторных исследований.

В рамках проекта авторы работы проанализировали разные геохимические пробы, создали и сравнили 10 алгоритмов, после чего представили диаграмму, которая продемонстрировала, каким образом можно применить почти любой метод машинного обучения», — добавил Евгений Барабошкин.

Предсказание на основе гиперспектральных данных

Также для ускорения и обеспечения повышенной точности лабораторных исследований можно использовать дополнительные методы исследования керна, например гиперспектральные данные. Так, учёные РГУ нефти и газа им. И. М. Губкина на основе базы из 110 тысяч геохимических проб сформировали несколько алгоритмов для классификации всех элементов и выделили несколько классов.

Для каждого из элементов был создан свой обучающий алгоритм, который включил в себя и нейронные, и сверочные нейронные сети, а также другие алгоритмы. В данной модели специалисты попробовали предсказать вышеуказанные классы на основе гиперспектральных данных.

Непосредственно в ходе экспериментов учёные выявили ещё более перспективный подход — сверочные нейронные сети. Они пришли к выводу, что в ходе лабораторных анализов это решение наиболее эффективно помогает выявить и проверить некоторые зоны, которые могли быть не включены в ходе отбора геохимических проб.

ГОК

То есть посредством сверочных нейронных сетей можно сразу выделить перспективные зоны для отбора геохимических проб, получить более качественные данные и тем самым уменьшить нагрузку на сотрудников лабораторий.

Как работают сверочные нейронные сети? Так же, как и искусственные нейронные сети, они вырабатывают те или иные правила, по которым можно вычленить из изображения наиболее важные данные для определения и предсказания.

Технология позволяет извлекать такую информацию о структуре и текстуре изображения, которая не всегда очевидна для человека. Впоследствии эти данные помогают наиболее точно определять те или иные характеристики и более качественно предсказывать данные, поступающие сразу из нескольких источников.

Как проходит обучение алгоритмов?

Как мы видим, методы машинного обучения являются действительно эффективным инструментом, помогающим ускорить и упростить геологические исследования.

Основа основ технологии — построение алгоритмов, которые самостоятельно учатся обработке данных. Но каким именно образом обучаются эти самые алгоритмы?

Как объяснил руководитель по развитию продукта DeepCore Digital Petroleum, традиционные методы машинного обучения с применением учителя в основном представляют собой искусственную нейронную сеть:

«На входе в эти сети изначально подаются данные, внутри лежат различные весы, которые пытаются классифицировать поступившую информацию или же предсказать то или иное значение. Непосредственно в процессе обучения этим весам приходит ответ от так называемой функции потери и функции ошибок, дающих алгоритму понять, в чём и в какой степени он ошибся.

Уже в процессе обучения алгоритм постепенно подстраивается таким образом, чтобы в будущем всё более правильно отвечать на поступающие данные. После обучения этот алгоритм пробуют применять на других данных, чтобы проверить точность его работы».

Обучение алгоритмов машинного обучения может осуществляться и с помощью метода опорных векторов. В данном подходе тоже используются весы, но сам принцип обучения имеет некоторые отличия. Допустим, у вас есть некоторые данные и условно плоскость, которая должна разделить их на различные классы. В процессе обучения эта плоскость подстраивается с помощью различных весов и на выходе может более точно описывать те или иные данные.

 «На самом деле сегодня существует множество технологий, которые могут значительно облегчить лабораторные исследования геологических данных. Для формирования модели месторождения можно применять методы моделирования, рекомендательных систем и так далее.

Не стоит забывать и про методы предиктивной аналитики, которые позволяют оценивать количество поступающей информации, определять тренды исследуемых показателей и прогнозировать будущие события. Используя такие инструменты, можно построить модель, которая будет постоянно обновлять информацию о месторождении и предлагать новые методы для исследований, а также подсчитывать ожидаемый эффект», — пояснил Евгений Барабошкин.

Перейти на страницу проекта "В помощь шахтеру"


Поделиться:
Еще по теме

Подпишитесь
на ежемесячную рассылку
для специалистов отрасли

Спецпроекты
Уголь России и Майнинг 2024
«Уголь России и Майнинг 2024». Обзор выставки
Одна из крупнейших отраслевых выставок «Уголь России и Майнинг 2024» состоится 4-7 июня в...
Mining World Russia 2024
23–25 апреля в Москве пройдёт одно из главных отраслевых событий — MiningWorld Russia. В этом году выставка выросла вдвое, а это значит, что...
Рудник. Урал 2023 | Обзор выставки
Главные события выставки «Рудник. Урал — 2023» в рамках спецпроекта dprom.online. Представляем «живые» материалы об участниках и о новых решениях:...
В помощь шахтёру | Путеводитель по технике и технологиям 2023
Путеводитель для шахтёра: актуальные решения для добывающих и перерабатывающих предприятий в одном месте. Рассказываем про современные технологии в...
Уголь России и Майнинг 2023 | Обзор выставки
«Уголь России и Майнинг 2023» - международная выставка техники и оборудования для добычи и обогащения полезных ископаемых. Главный интернет-партнёр...
MiningWorld Russia 2023
25 апреля 2023 года в Москве стартует одна из главных выставок в добывающей отрасли – MiningWorld Russia.

Спецпроект «MWR-2023: Обзор выставки» –...

Уголь России и Майнинг 2022 | Обзор выставки
Проект «Уголь России и Майнинг – 2022» глазами dprom.online. Обзор XXX Международной специализированной выставки в Новокузнецке: обзоры техники,...
MiningWorld Russia 2022 | Обзор выставки
Обзор технических решений для добычи, обогащения и транспортировки полезных ископаемых, представленных на площадке МВЦ «Крокус Экспо» в Москве....
Рудник Урала | Обзор выставки
Главные события выставки «Рудник Урала» в рамках спецпроекта dprom.online. Полный обзор мероприятия: «живые» материалы об участниках и их решениях -...
В помощь шахтёру | Путеводитель по технике и технологиям
Путеводитель по технике и технологиям, которые делают работу предприятий эффективной и безопасной.
Уголь России и Майнинг 2021 | Обзор выставки
Спецпроект dprom.online, посвящённый международной выставке «Уголь России и Майнинг 2021» в Новокузнецке. Репортажи со стендов компаний-участников,...
Mining World Russia 2021 | Обзор выставки
Спецпроект MiningWorld Russia 2021: в прямом контакте. Читайте уникальные материалы с крупной отраслевой выставки международного уровня, прошедшей...
День Шахтёра 2020 | Взгляд изнутри
В последнее воскресенье августа свой праздник отмечают люди, занятые в горной добыче. В День шахтёра 2020 принимают поздравления профессионалы своего...
Уголь России и Майнинг 2019 | Обзор выставки
Спецпроект dprom.online: следите за выставкой в режиме реального времени.

Ежедневно: репортажи, фотоотчеты, обзоры стендов участников и релизы с...

COVID-2019 | Добывающая отрасль в режиме карантина
Спецпроект DPROM-НОНСТОП. Актуальные задачи и современные решения. Достижения и рекорды. Мнения и прогнозы. Работа отрасли в условиях новой...
Mining World Russia 2020 | Репортаж и обзор участников выставки
Международная выставка в Москве Mining World Russia 2020 – теперь в онлайн-режиме. Показываем весь ассортимент машин и оборудования для добычи,...
популярное на сайте
Обзор выставки Mining World Russia 2024. Анонсы участников, репортажи с места событий. Читайте по ссылке Свернуть

Подпишитесь
на ежемесячную рассылку
для специалистов отрасли

Спасибо!

Теперь редакторы в курсе.