Можно листать вниз
Вискомуфты/вентиляторы Horton
Узнать больше Свернуть
Развернуть

Преимущества вязкостных муфт Horton: снижение расхода топлива и шума вентилятора, отсутствие переохлаждения двигателя и эксплуатационных расходов.
Kонтакт: sergey.fedorenko@hortonww.com | +7 (926) 046-6477
hortonww.com/mining-russia.html

Подробнее Свернуть
Нашли ошибку? Выделите ее мышкой
и нажмите
Ctrl + Enter
Поделиться:
Вы уже голосовали
Спонсор статьи

Человек vs ИИ. Революция в машинном обучении

15.03.2021

Однажды планету Земля застигнет революция, и роботы полностью заменят людей. Ни на чём не основанная фантазийная футурология, скажете вы. А вот и нет: рано или поздно технологический прогресс приведёт нас к тому, что миром будет править общий искусственный интеллект — так называемый AGI. Правда, никто точно не знает, когда это произойдёт: через 50, 100, а может, и 200 лет. А если сказать, что революция вершится прямо на наших глазах?

Искусственный интеллект

В индустриальном секторе, испещрённом цифровизацией, автоматизацией и иже с ними, надвигается очередной резкий сдвиг в сфере технологий ИИ. Совсем скоро промышленность в полную силу почувствует мощь революции в технологиях AI (Artificial Intelligence). О новом будущем рассуждали сразу несколько экспертов онлайн-конференции «Ярмарка решений для ГМК», которая прошла 17-18 февраля 2021 года.

Искусственный интеллект и машинное обучение

Чтобы понять масштабы новых веяний в сфере искусственного интеллекта и в том числе в машинном обучении, нужно сначала вспомнить, по какому принципу работали традиционные технологии. Основная масса систем автоматизации прошлого базируется на человеческом ресурсе: люди формируют правила, подают в алгоритмы определённые данные, и эти алгоритмы выдают какие-либо результаты.

То есть машинное обучение генерирует правила, основываясь исключительно на личном опыте человека. Подход по своей сути не идеальный, ведь некоторые задачи в принципе невозможно решить «вручную». В этом смысле именно мы являемся слабым звеном, тормозящим производственный процесс. Человек не может предсказать бесчисленное множество всевозможных ситуаций, в которых могут оказаться, к примеру, автоматизированные буровые станки или самоходные машины.

цифровизация месторождения
Фото: gazprom-neft.ru

«Самая трудоёмкая часть при построении моделей для ИИ — подготовка, обработка данных и определение свойств, необходимых для конкретного процесса. Работая над цифровыми проектами, инженеры и аналитики данных тратят на это основную часть времени. Напрашивается вопрос: если мы научились создавать модели машинного обучения, почему бы не предложить этим моделям самим создавать модели машинного обучения?

Идея очевидная, над её воплощением начали задумываться ещё где-то с 2012 года. Сегодня мы подошли к новому уровню развития автоматического машинного обучения Auto ML. Алгоритм самостоятельно подбирает не только параметры, но и самые различные модели, способы объединения данных, предпроцессинг — в общем, формирует огромное количество комбинаций и находит оптимальное решение задачи. Другими словами, уже реально существуют системы, позволяющие автоматически настраивать модели практически без участия человека», — рассказал руководитель Лаборатории искусственного интеллекта «Сбера» Леонид Жуков.

машинное обучение

Эксперт верно подметил, что обычных системах Auto ML человеку всё равно отводится некая роль: как минимум ему нужно придумать, как собрать фичи. И о какой революции тогда идёт речь? Собственно, прямо сейчас в сфере технологий ИИ происходит фундаментальный сдвиг: на смену «классике» приходят методы глубинного машинного обучения, способные обучаться новому самостоятельно.

Концептуально это работает: в непромышленных сферах уже применяются инструменты продвинутой аналитики, которые могут написать одну модель, испробовать её на определённых задачах и использовать для решения совершенно новых. И, по словам г-на Жукова, недалёк тот день, когда появятся машины, способные самостоятельно работать с сигналами датчиков и в том числе смогут применяться на производстве. Алгоритмы будут использовать распределённое обучение: модели начнут обучаться на своих данных, а затем объединять и накапливать полученные знания. Промышленникам откроется дверь к построению моделей, которые пока создавать экономически невыгодно, — машины сделают цифровизацию доступной, дешёвой и… идеальной.  

А как же человек?

Автоматическое машинное обучение в промышленности вызывает неподдельный интерес у человечества не только из-за желания довести процессы и операции до совершенства. Наряду с не вообразимыми доселе перспективами ощущается нарастающий страх коренного изменения или вовсе потери роли человека.

В этом смысле грядёт не менее революционный перелом. По словам Леонида Жукова, с появлением глубинного машинного обучения отпадёт проблема передачи данных, зато родится новая — агрегация знаний. Так, с высокой долей вероятности произойдёт трансформация работы в сфере data science. На данный момент схема построения моделей работает так: IT-специалисты изучают сначала бизнес, потом данные, затем идёт подготовка данных, моделирование, оценка результатов и так далее. В новой реальности подготовка данных и моделирование — основная часть работы — перейдут в обязанности Auto ML.

Александринская ГРК
Фото: rmk-group.ru

«Считаю, что Auto ML станет доминирующей технологией в ближайшие два года. Роль аналитиков данных уменьшится, при этом возрастёт роль технологов. Опять же, это очень удобно для обучения, потому что производственникам не придётся окунаться в программирование. Происходит и другой очень сильный сдвиг: переход от аналитиков данных к специалистам ML Ops . Это инженеры, которые поддерживают работающие модели, интегрируют их с системами и обеспечивают постоянную непрерывность при обучении работы модели», — заключил эксперт.

Надо сказать, что у промышленников имеется ещё один страх. Страх, плавно перетекающий в угрозу. Другой спикер конференции, глобальный директор BCG GAMMA Сильвейн Дюрантон представил итоги опроса более 250 горнодобывающих компаний мира о надвигающейся революции в продвинутой аналитике. Оказалось, многие сейчас воспринимают машинное обучение как угрозу, а не как возможность, потому что сдвиг протекает с ростом конкуренции.

цифровые технологии

«В сфере продвинутой аналитики уже появились свои лидеры и отстающие. Все понимают, что выиграет тот, кто успеет раньше других сделать прыжок в цифровой трансформации. Пандемия коронавируса показала, что менее подкованные в плане «цифры» компании начали всё интенсивнее отставать. Теперь это вопрос выживания, а не выбора. Большинство компаний терпит крах на пути к внедрению технологий искусственного интеллекта. Приведу свежую статистику: у 70% компаний нет никакого возвратного эффекта от ИИ. Для них искусственный интеллект является источником затрат, а не ощутимых выгод. Ещё 20% компаний прибавили около 1 процентного пункта к EBITDA. И всего лишь 10% компаний смогли нарастить показатель на 3 процентных пункта и выше — именно их сегодня можно назвать чемпионами в области развития цифровых технологий», — утверждает г-н Дюрантон.

Он же отметил, что разница между победителями и проигравшими не так очевидна: всё-таки большинство компаний так или иначе привлекает новые ресурсы, инвестирует в озёра данных модели, внедряет цифровые проекты. Главное, правильно скомбинировать возможности машинного обучения со знаниями специалистов. Другими словами, чётко распределить обязанности искусственного интеллекта и человека.

«Не остаться в аутсайдерах». Бионический подход

В стремлении познать «таинство» искусственного интеллекта человек всё глубже проникается возможностями цифровых продуктов. «Прокачаться» на всех уровнях трансформации помогает так называемый бионический подход. После кризиса, вызванного пандемией, горнодобывающая промышленность в очередной раз переосмыслила закономерности «цифры»: более 85% компаний ускорили цифровую трансформацию. В отрасли постоянно растёт число беспилотников, робототехники, цифровых двойников, моделей машинного обучения, блокчейн-платформ.

В «мозаике» цифровых продуктов лучше не стоит терять человека. Роли технологий должно отводиться лишь 10-20%, всё остальное зависит от компетенций персонала. В этом, собственно, суть бионического подхода. Как объяснил председатель совета директоров и руководитель Digital BCG в Нью-Йорке Томас Райхерт, те, кто инвестирует в бионический подход, в среднем двукратно превосходят конкурентов по ключевым показателям.

Увеличивается стоимость предприятия, растут доходы, улучшаются ключевые показатели: оптимизация расходов, качество продукции, удовлетворённость потребителей, сроки выхода на рынок. В BCG проанализировали действия компаний, которые получили реальный эффект, чтобы определить ключ к успеху. Выяснилось, что эффективность достигается только в том случае, если компания преуспела сразу в шести направлениях.

подземный рудник
Фото: polymetalinternational.com

По статистике BCG, на сегодняшний день всего около 14% промышленных компаний мира вышли из кризиса «победителями».

Чтобы безболезненно перейти на «цифру» и приблизиться к автоматизации будущего, компании должны выполнить следующие шаги:

  • комплексная стратегия, формулировка чётких целей трансформации;
  • вовлечение руководства всех уровней;
  • привлечение высококвалифицированных кадров;
  • распространение Agile-подходов к управлению по всей организации;
  • эффективный контроль хода работ для достижения заданных результатов;
  • подбор модульных технологий и платформы работы с данными с учетом специфики бизнеса.

«Какие ошибки чаще всего делают компании на пути к цифровой трансформации? Во-первых, многие нечётко представляют, чего именно хотят достичь. Они так увлекаются новыми технологиями, успехами других компаний, что окунаются в омут с головой без должного представления о том, что нужно конкретно их бизнесу. Во-вторых, многие считают, что залог успеха кроется в инвестировании в технологии. Компании меняют свои ключевые формы в погоне за чем-то новым, производят новые инфраструктурные проекты, но практически не меняют собственно бизнес и взаимодействие персонала», — высказался Томас Райхерт.

Итак, цифровую революцию не остановить. Проблема лишь в том, что процесс этот сугубо индивидуальный и оттого разрозненный. Если через пару лет искусственный интеллект и продвинутая аналитика действительно станут реальностью, индустриальному бизнесу нужно уже сейчас на порядок ускорить цифровую трансформацию. Иначе есть риск остаться в проигравших.

Читайте также: «ИЦО: новый уровень управления месторождением».


Поделиться:

Понравился материал? Подпишитесь
на отраслевой дайджест и получайте подборку статей каждый месяц
.

Нашли ошибку? Выделите ее мышкой
и нажмите
Ctrl + Enter
Поделиться:
Вы уже голосовали
Еще по теме
Полный цикл управления технологическим процессом на ЗИФ...
Драгметаллы
крановая техника
Краны TADANO: более 100 лет уверенного подъёма
Универсальные решения
Возможно всё и даже больше
Черногорский РМЗ. Возможно всё и даже больше
Угольная промышленность
спектрометр Гранд СВЧ
Анализ моторных масел. Возможности спектрометра «Гранд-СВЧ»
Универсальные решения
экскаватор Hyundai R260LS-9S
Экскаватор Hyundai R260LC-9S
Горная промышленность
Оптимизированная транспортная система. Возможность повысить эффективность перевозки людей и материалов и снизить эксплуатационные затраты
Как снизить затраты и повысить эффективность работы шахты
Горная промышленность
НПО Аконит
Делай, как предписано в матрице, и получишь отличный барабан
Универсальные решения
футеровка Element
Как экономить до $4000 в год на перефутеровке одного...
Универсальные решения
Кадфем си ай эс
На XVII Конференции CADFEM/Ansys обсудили роль численного...
Универсальные решения
BALLUFF
Датчики BALLUF BCM – достоверные данные в нужное время
Универсальные решения
обсерватор для вахтовиков
Обсервация вахтовиков. Опыт «Сава Сервис»
Универсальные решения
футеровка Element
Замена стали на биметалл от Element в 10 раз увеличила срок...
Универсальные решения
ФНПЦ «Алтай»: выпущено в наукограде!
Универсальные решения
инженерные изыскания
Инженерные изыскания — must have для удачного проекта
Горная промышленность
Schneider Electric
От производителя до потребителя — один шаг
Универсальные решения
экскаватор
Экскаватор Hyundai R520LC-9S
Горная промышленность
конвейерная лента
Три проблемы, которые решает правильная лента для...
Универсальные решения
бульдозер CAT D11
Главная премьера будущего сезона: первые бульдозеры Cat®...
Горная промышленность
бульдозер Shantui
Гидростатическое движение Shantui в России
Горная промышленность
Горнорудная компания воспользовалась преимуществами...
Горная промышленность
Познай разницу с буровым станком Levent 2002 RX-4
Горная промышленность
Рисунок 1. Инструмент для измерения напряжений Sigra IST
Sigra: Важность измерения напряжений в горных породах
Горная промышленность
грохоты Kroosh
Многочастотные грохоты Kroosh в обогащении отходов флотации...
Угольная промышленность
промышленное пылеподавление
Не туманный эффект: новое слово в пылеподавлении
Универсальные решения
Применение полиуретана в горнодобывающей промышленности
Горная промышленность
погрузчик Shantui
SHANTUI: фронтальные погрузчики на любой выбор
Горная промышленность

Подпишитесь
на ежемесячную рассылку
для специалистов отрасли

Спецпроекты
Mining World Russia 2021 | Обзор выставки
Спецпроект MiningWorld Russia 2021: в прямом контакте. Читайте уникальные материалы с крупной отраслевой выставки международного уровня, прошедшей...
День Шахтёра 2020
В последнее воскресенье августа свой праздник отмечают люди, занятые в горной добыче. В День шахтёра 2020 принимают поздравления профессионалы своего...
Уголь России и Майнинг 2019
Спецпроект dprom.online: следите за выставкой в режиме реального времени.

Ежедневно: репортажи, фотоотчеты, обзоры стендов участников и релизы с...

COVID-2019
Спецпроект DPROM-НОНСТОП. Актуальные задачи и современные решения. Достижения и рекорды. Мнения и прогнозы. Работа отрасли в условиях новой...
Mining World Russia 2020 | Репортаж и обзор участников выставки
Международная выставка в Москве Mining World Russia 2020 – теперь в онлайн-режиме. Показываем весь ассортимент машин и оборудования для добычи,...
популярное на сайте
Mining World Russia 2021. Читайте онлайн Свернуть

Подпишитесь
на ежемесячную рассылку
для специалистов отрасли

Спасибо!

Теперь редакторы в курсе.